The DNA-binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori.
نویسندگان
چکیده
BACKGROUND Bacterial genomes are compacted by association with histone-like proteins to form a complex known as bacterial chromatin. The histone-like protein HU is capable of binding and bending the DNA molecule, a function related to compaction, protection, and regulation of gene expression. In Helicobacter pylori, HU is the only histone-like protein described so far. Proteomic analysis from our laboratory showed that this protein is overexpressed under acidic stress. MATERIALS AND METHODS We used a purified recombinant wild-type protein and two mutant proteins with the amino acid substitutions K3A/S27D and K62R/V63N/P64A to characterize the function of the N-terminal domain and the flexible arm of HU. RESULTS In vitro assays for DNA protection, bending, and compaction were performed. We also designed a H. pylori hup::cat mutant strain to study the role of HU in the acid stress response. HUwt protein binds DNA and promotes its bending and compaction. Compared with the wild-type protein, both mutant proteins have less affinity for DNA and an impaired bending and compaction ability. By using qRT-PCR, we confirmed overexpression of two genes related to acid stress response (ureA and speA). Such overexpression was abolished in the hup::cat strain, which shows an acid-sensitive phenotype. CONCLUSIONS Altogether, we have shown that HUwt -DNA complex formation is favored under acidic pH and that the complex protects DNA from endonucleolytic cleavage and oxidative stress damage. We also showed that the amino-terminal domain of HU is relevant to DNA-protein complex formation and that the flexible arm of HU is involved in the bending and compaction activities of HU.
منابع مشابه
Rapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملRole of Probiotics in the Management of Helicobacter Pylori Infection
Helicobacter pylori is a gram-negative, spiral-shaped, microaerophilic organism that colonizes the stomach of humans and causes chronic-active gastritis, peptic ulcer disease, and gastric cancers, including adenocarcinoma of the stomach and MALT (mucosal-associated lymphoid tumor) lymphomas. H. pylori colonizes the stomach of over 50 % the world’s human population, primarily those who reside in...
متن کاملComparison of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Eradication of Helicobacter pylori Infection, Serum Inflammatory Factors and Total Antioxidant Capacity
Helicobacter pylori infection, the most common chronic bacterial infection in the world, and an important cause of gastrointestinal disorders, may be involved in the pathogenesis of some extra-gastrointestinal disturbances, as well as an increase in blood levels of certain inflammatory markers. Anti-bacterial activity against Helicobacter pylori and anti-inflammatory properties of omega-3 fatty...
متن کاملExpression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori
Objective(s): Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA) is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity. Materials and Methods: The antigenic region of V...
متن کاملDetection of Helicobacter DNA in Bile Samples of Patients with Biliary Diseases Living in South of Iran
Background: It has been reported that several species of Helicobacter colonize the biliary tract of animals and human, but their participation in hepatobiliary diseases are not established. This study is undertaken to determine if Helicobacter genus members, especially with regard to H. pylori, could be detected in the bile and gallbladder diseases. Methods: Thirty-eight gallbladder tissues and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Helicobacter
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2015